Numpy 基礎
- 2023.07.11
- Numpy
NumPy 是 Python語言的一個擴充程式庫。
支援高階大規模的多維陣列與矩陣運算,
此外也針對陣列運算提供大量的數學函式函式庫。
向量 vector
Vector is ordered arrays of numbers. 
In notation, vectors are denoted with lower case bold letters such as x. 
The elements of a vector are all the same type (dtype). 
The number of elements in the array 
 is often referred to as the dimension
is often referred to as the dimension 
 though mathematicians may prefer rank.
though mathematicians may prefer rank.
Vector Creation
| np.zeros(4) | [0. 0. 0. 0.] (float64) | 
| np.arange(4) np.arange(4.) | [0 1 2 3] (int64) [0. 1. 2. 3.] (float64) | 
| np.random.rand(4) | [0.35838855 0.65743684 0.73020667 0.6198217] | 
| np.array([5, 4, 3, 2]) np.array([5., 4, 3, 2]) | [5 4 3 2] (int64) [5. 4. 3. 2.] (float64) | 
Slicing and Indexing
Indexing
a = np.arange(10) # [0 1 2 3 4 5 6 7 8 9] print(a[2]) # 2 print(a[-1]) # a[-1] := a[len(a) - 1] = 9
向量運算
 使用 for 迴圈進行向量運算
 使用 for 迴圈進行向量運算
 使用 numpy
 使用 numpy
| 向量加減 | x + y | 
| Negate elements of x. | –x | 
| 純量乘法 (Scalar Multiplication)  | Scalar Vector operations | w * x | 
| np.dot(x, y) | |
| Sum of all elements of x. | a = np.sum(x) | 
| Mean of all elements of x. | a = np.mean(x) | 
| Create a vector y which ith element of y  | y = x ** a | 
矩陣 Matrix
Matrix, are 2-D (two dimensional) arrays.
Matrices are denoted with capitol, bold letter such as X.
m is often the number of rows and n the number of columns.
$$ \textbf{X} = \left[
\begin{array}
x_{00} & x_{01} & … & x_{0(n-1)} \\
x_{10} & x_{11} & … & x_{1(n-1)} \\
… & … & … & … \\
x_{(m-1)0} & x_{(m-1)1} & … & x_{(m-1)(n-1)}
\end{array}
\right]_{ \ m \times n} $$
陣列 Array
Array Creation
np.zeros(d_0, d_1, …)
np.shape(array)
Return a tuple of ints, 
the elements of the tuple 
give the lengths of the corresponding array dimensions.
x = np.zeros(4, 3)
"""
x = [ [0. 0. 0.]
      [0. 0. 0.]
      [0. 0. 0.]
      [0. 0. 0.]]
"""
print(np.shape(x)) # (4, 3)
Last Updated on 2023/08/16 by A1go
 
	
           
  